## FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

| QUALIFICATION: BACHELOR OF SCIENCE |  |
| :--- | :--- |
| QUALIFICATION CODE: 07BOSC | LEVEL: 6 |
| COURSE CODE: ORC601S | COURSE NAME: ORGANIC CHEMISTRY 1 |
| SESSION: JULY 2019 | PAPER: THEORY |
| DURATION: 3 HOURS | MARKS: 100 |


| SECOND OPPORTUNITY/SUPPLEMENTARY EXAMINATION QUESTION PAPER |  |
| :--- | :--- |
| EXAMINER(S) |  |
|  | MS. NATALIA SHAKELA |
| MODERATOR: |  |


| INSTRUCTIONS |
| :--- |
| 1. Answer ALL the questions. |
| 2. Write clearly and neatly. <br> 3. Number the answers clearly <br> 4. All written work must be done in blue or black ink and sketches can <br> 5. done in pencil |
| 5o books, notes and other additional aids are allowed |

PERMISSIBLE MATERIALS<br>Non-programmable Calculators<br>ATTACHMENTS<br>pKa Chart and Periodic Table

## QUESTION 1: Multiple Choice Questions

- There are 25 multiple choice questions in this section. Each question carries 2 marks.
- Answer ALL questions by selecting the letter of the correct answer.
- Choose the best possible answer for each question, even if you think there is another possible answer that is not given.
1.1 Consider the following molecule having three labelled protons, $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}$ and $\mathrm{H}_{\mathrm{c}}$. Rank these protons in order of increasing acidity.

A. $\mathrm{H}_{\mathrm{a}} ; \mathrm{H}_{\mathrm{b}} ; \mathrm{H}_{\mathrm{c}}$
B. $\mathrm{H}_{\mathrm{b}} ; \mathrm{H}_{\mathrm{c}} ; \mathrm{H}_{\mathrm{a}}$
C. $\mathrm{H}_{\mathrm{c}} ; \mathrm{H}_{\mathrm{a}} ; \mathrm{H}_{\mathrm{b}}$
D. $\mathrm{H}_{\mathrm{b}} ; \mathrm{H}_{\mathrm{a}} ; \mathrm{H}_{\mathrm{c}}$
1.2 Which of the following choices list the compounds in order of increasing acidity?
A) $\mathrm{BrCH}_{2} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{NH}_{2}<\mathrm{CH}_{3} \mathrm{OH}$
B) $\mathrm{CH}_{3} \mathrm{NH}_{2}<\mathrm{CH}_{3} \mathrm{OH}<\mathrm{BrCH}_{2} \mathrm{OH}$
C) $\mathrm{CH}_{3} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{NH}_{2}<\mathrm{BrCH}_{2} \mathrm{OH}$
D) $\mathrm{CH}_{3} \mathrm{OH}<\mathrm{BrCH}_{2} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{NH}_{2}$
A. A
B. B
C. C
D. D
1.3 Which of the following statements is true in comparing ethane, ethene and ethyne to one another?
A. Ethyne is the weakest acid and has the longest C-H bond distance.
B. Ethyne is the strongest acid and has the shortest C-H bond distance.
C. Ethane is the strongest acid and has the longest C-H bond distance.
D. Ethene is the strongest acid and has the shortest C-H bond distance.
1.4 Which statements about acid-base equilibria are true?
I. The pKa is the negative $\log _{10}$ of the acid equilibrium constant
II. A stronger acid has a pKa with a smaller value than a weaker acid
III. A stronger base has a conjugate acid which has a pKa with a smaller value than a weaker base
IV. The $\mathrm{Ka}=\mathrm{K}[\mathrm{HA}]$
A. II, III
B. I, II
C. I, II, III
D. II, III, IV
1.5 Which of the following drawings represent the enantiomer of Compound X ?

X

A

B

C
A. A
B. B
C. C
D. All of them
1.6 Which of the following properties are not identical for constitutional isomers?
I. Molecular formula
II. Molecular Weight
III. Order of attachment of atoms
IV. Physical Properties
A. I; IV
B. II; III
C. I; II
D. III; IV
1.7 Which is the structure of trans-1-ethyl-3-isopropylcyclohexane?
a)

b)

c)

d)

A. A
B. B
C. C
D. D
1.8 How many stereogenic centres are present in the following compound?

A. 0
B. 1
C. 2
D. 3
1.9 How are compounds A and B below related?


A


B
A. $A$ and $b$ are enantiomers
B. $A$ and $B$ are diastereomers
C. $A$ and $B$ are constitutional isomers
D. A and $B$ are two representations of the same compound
1.10 Which step would most likely have the largest activation energy?

A. Step 1
B. Step 2
C. Step 3
D. It cannot be determined from the information provided
1.11 The IUPAC name of the compound below is:

A. 2-chloro-4-isopropyl-2,6-dimethyloctane
B. 2,6-dimethyl-2-chloro-4-isopropyloctane
C. 7-chloro-5-isopropyl-3,7-dimethyloctane
D. 2-chloro-4-isopropyl-2,7-dimethyloctane
1.12 What is the IUPAC name for the following compound?

A. cis, trans-2, 4-heptadiene
B. 2Z,4Z-2, 4-heptadiene
C. cis, cis-2, 4-heptadiene
D. trans, trans-2, 4-heptadiene
1.13 Using Markovnikov's rule, predict the position of the Cl atom in the major product from the reaction of 1-methylcyclohexene with HCl .

A. A
B. B
C. C
D. D
1.14 Which of the following compounds has the highest boiling point?
A

B


Clors)
E

A. A
B. B
C. C
D. D
1.15 Which of the following alkenes will react faster with water in the presence of a small amount of $\mathrm{H}_{2} \mathrm{SO}_{4}$ ?

A

B

c
A. A
B. B
C. C
D. D
1.16 Determine the product of the following reaction:

$\xrightarrow[\mathrm{HgSO}_{4}]{\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4}} \quad \square$
A.

B.

c.

D.

A. A
B. B
C. C
D. D
1.17 Which of the following statements about an SN1 mechanism is true?
A. The reaction is fastest with primary halides
B. The rate of the reaction increases when the solvent is changed from DMSO to Ethanol.
C. The rate of the reaction decreases when the solvent is changed from DMSO to ethanol
D. The identity of the leaving group does not affect the reaction rate.
1.18 Which of the following statements is (are) true about an E2 elimination reaction?
A. It is fastest with $3^{\circ}$ Halides
B. It exhibits second-order kinetics
C. A better leaving group should make a faster reaction
D. All of the above are true
1.19 A tertiary halide reacts with a weak base and nucleophile. The reaction will proceed via which of the following mechanism(s)?
A. $\mathrm{S}_{\mathrm{N}} 1$
B. $\mathrm{S}_{\mathrm{N}} 1$ and E 1
C. E2
D. $\mathrm{S}_{\mathrm{N}} 1$ and E 2
1.20 What is the product of the reaction below?

A.

B.

c.

D.

A. A
B. B
C. C
D. D
1.21 Which of the following compounds is most likely to show first-order kinetics in a substitution reaction?

A

B

C

D
A. A
B. B
C. C
D. D
1.22 Given the following substitution reaction, what would the effect be of changing the solvent from $\mathrm{CH}_{3} \mathrm{OH}$ to $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}=\mathrm{O}$ ?
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{Br}+\mathrm{NaOH} \longrightarrow \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{OH}+\mathrm{Br}^{-}$
A. The rate would increase because SN2 reactions favour a polar aprotic solvent.
B. The rate would decrease because SN 1 reactions favour a polar protic solvent
C. The reaction rate will not be affected
D. The potential change cannot be predicted
1.23 Which of the following anions is the best leaving group?

A.
${ }^{-} \mathrm{OH}$
B.

C.
A. A
B. B
C. C
D. $A$ and $B$ are equal and are the best
1.24 How many peaks could theoretically be observed in the ${ }^{1} \mathrm{H}$ NMR signal(s) for each of the indicated atoms?
A

B

C

D

A. A: 7; B: 4; C: $3 ; \mathrm{D}: 3$
B. A: 7; B: 3; C: 3; D: 3
C. A: 7; B: 4; C: 2; D: 4
D. A: 7; B: 4; C: 3; D: 4
1.25 Which compound(s) does not give four sets of absorptions in its or their ${ }^{1} \mathrm{H}$ NMR spectrum?


A


B


C
A. A
B. B
C. C
D. A and B

What is (are) the product(s) of the following reactions? Represent the products as skeletal structures and show the stereochemistry where necessary.

Note: Each question carries 2 marks.

a)


$\xrightarrow{\text { Substitution only }}$
b)


d)
2) $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{OH}^{-}$

Lindlar's catalyst

Determine the reagents required to achieve each of the following transformations. Note: Each question carries 2 marks.
a)



b)



c)



$+$

d)



e)




## QUESTION 4

Draw a stepwise, detailed mechanism for the reaction BELOW. In order to receive full marks, show all the electron movement, the intermediates and all the products formed.


Draw a stepwise, detailed mechanism for the following reaction. In order to receive full marks, show all the electron movement; draw all the intermediates and all the products.

Hint: The reaction produces two alkene products


## QUESTION 6

An unknown compound $A$ has the molecular formula $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}$. $A$ absorbs strongly in the $I R$ at $1715 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ NMR spectral data for $\mathbf{A}$ are given below. What is the structure of $\mathbf{A}$ ?

| absorption | ppm | ratio of absorbing H's |
| :--- | :--- | :--- |
| singlet | 1.0 | 6 |
| triplet | 1.2 | 3 |
| quartet | 2.2 | 2 |
| broad singlet | 7.0 | 5 |

## ${ }^{1} \mathrm{H}$ NMR SPECTRAL DATA

Characteristic Chemical Shifts of Common Types of Protons


$$
\vec{\sigma} \quad 0 \quad \underset{\sim}{6}
$$

$$
\because
$$

$$
\stackrel{\sim}{\sim}
$$

$$
\mathscr{e}
$$

$$
8 \quad i
$$



$\rangle \gg$

conjugate acid sulfuric acid


 $\stackrel{1}{2}$ $I_{ \pm}$ 4

$$
\begin{aligned}
& \text { pea Chart }
\end{aligned}
$$



